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1. We will verify that (R×,×) is a group.

(1) Closedness (well-definedness) of binary operation: Let r, s ∈ R×, then r−1, s−1 ex-
ists, note that (rs)(s−1r−1) = (s−1r−1)(rs) = 1R, so that rs ∈ R×.

(2) Associativity: It follows from the definition of ring that × is associative on R, so it is
also associative when restricted to R×.

(3) Existence of identity and inverse: The identity element is given by the multiplicative
identity 1R of R, indeed r× 1R = 1R× r = r. The inverse of an element r ∈ R× is given
by r−1 as guaranteed by the definition of R×. Note that r−1 is only assumed to be in R, it
is in fact in R× because rr−1 = r−1r = 1R implies that (r−1)−1 = r exists.

(a) Z×
20 = {k ∈ Z20 : gcd(k, 20) = 1} = {1, 3, 7, 9, 11, 13, 17, 19}. Indeed, we can

prove that in general, Z×
n = {k ∈ Zn : gcd(k, n) = 1}. For the ⊆ inclusion, note

that if k has a multiplicative inverse in Zn, then there exists l such that kl ≡ 1
modulo n, in other words kl + nm = 1 for some m, l ∈ Z. Since gcd(k, n) divides
kl + nm, this implies that gcd(k, n) divides 1, so it must be equal to 1.
For the ⊇ inclusion, if gcd(k, n) = 1, then we can find m, l ∈ Z so that kl + nm =
gcd(k, n) = 1. This fact actually follows from Euclidean algorithm in Z, which
you may take for granted. In particular, the equation implies that kl ≡ 1 modulo n.
Therefore k has a multiplicative inverse in the ring Zn.

(b) By definition Mn×n(C) = {A ∈ Mn×n(C) : ∃B,AB = BA = In} = GLn(C) is
the group of invertible matrices with coefficients in C.

(c) Let R be an integral domain, consider the degree function deg : R[x] \ {0} → N
where deg(f(x)) is defined as the largest n such that the coefficient of xn is nonzero.
Note that deg(fg) = deg(f) + deg(g), since if anxn and bmx

m are the leading
terms of f and g respectively, then anbmxn+m is the leading term of fg, as anbm
is nonzero since R is an integral domain. Let f(x) ∈ R[x]×, there exists g(x) so
that f(x)g(x) = 1R (the multiplicative identity of 1R, when regarded as an element
of R[x] is the multiplicative identity). So deg(f) + deg(g) = deg(1R) = 0, which
implies that deg(f) = deg(g) = 0, so f, g ∈ R. Therefore

R[x]× = {f(x) ∈ R[x] : ∃g, f(x)g(x) = 1R} = {r ∈ R : ∃s, rs = sr = 1R} = R×.

Remark: The set of units in R[x] in general for R not an integral domain is more
complicated. An element r ∈ R is called nilpotent if rn = 0 for some n > 0. Then
R[x]× in general is given by f(x) = a0 + a1x + ... + anx

n such that a0 ∈ R× and
a1, ..., an ∈ R are nilpotent.



2. To verify that (End(G),+, ◦) is a ring, we have to verify the following properties:

(1) (End(G),+) is an abelian group: + indeed defines a binary operation on R, since
φ+ψ is still an endomorphism, by courtesy of the fact thatG is abelian. The associativity
of + follows from associativity of product of G. And the operation is abelian since G is
abelian. The identity (i.e. additive identity) is given by 0(g) := e for all g ∈ G. This
endormophism satisfies (φ+ 0)(g) = (0 + φ)(g) = φ(g). Therefore the additive inverse
of a φ ∈ R is given by −φ(g) := φ(g)−1, again this is a well-defined homomorphism
since G is abelian.

(2) ◦ defines an associative binary operation on End(G) with multiplicative identity: The
associativity follows from that of composition. And the multiplicative identity 1 is just
given by 1 = id the identity homomorphism.

(3) Finally, we have to verify the distributive law. If φ, ψ, σ are inR, then (φ+ψ)◦σ(g) =
(φ + ψ)(σ(g)) = φ(σ(g))ψ(σ(g)) = (φ ◦ σ + ψ ◦ σ)(g). The other distributive law is
similar.

We claim that (End(Zp),+, ◦) ∼= (Zp,+,×). Note that this is an isomorphism of rings
(you will learn about this soon, and you may come back to reread this part later), on the
RHS, we have the ring of integers modulo p, while the LHS involves the ring structure
coming from composition of group homomorphisms. The map is explicitly given by
F : End(Zp) → (Zp,+,×) defined by F (φ) = φ(1). This is a ring homomorphism
since F (φ + ψ) = (φ + ψ)(1) = φ(1) + ψ(1), and F (1End(G)) = id(1) = 1 which is
the multiplicative identity in Zp. We also have F (φ ◦ σ) = (φ ◦ σ)(1) = φ(σ(1)). We
may write k = σ(1) for some 0 ≤ k ≤ p − 1, then φ(σ(1)) = φ(k) = φ(1 + ...+ 1︸ ︷︷ ︸

k times

) =

φ(1) · k = φ(1)σ(1). It remains to check that F is bijective. In fact, one can construct an
inverse homomorphism G : (Zp,+,×) → (End(G),+, ◦) by G(k) = φk : 1 7→ k, where
k ∈ Zp. Since Zp is a cyclic group, so it is determined by the image of 1. It is a simple
exercise to verify that F (G(k)) = k and G(F (φ)) = φ.

Some comments: End(G) is an important example of a ring. The endomorphism ring of
an abelian group is the ring-theoretic analogue of symmetric group of a set. Remember
when we learnt about groups, a lot of emphasis was put into explaining how one may
understand certain groups as symmetries of some sets (for example, a group may act on
set of left cosets of a subgroup). The idea is that groups are understood by its action on
sets, whereas rings are understood by its action on abelian groups. A ring acting on an
abelian group is known as a module, it is a generalization of a vector space, where the
ring is replaced by a field. The theory of modules is a rich and deep subject that is both
related to representation theory and algebraic geometry.

Proposition. Let (R,+,×) be a ring, then R is isomorphic to a subring of an endormor-
phism ring.

Proof. Let r ∈ R, then r defines a group homomorphism Lr : (R,+) → (R,+) by
Lr(x) = rx for any x ∈ R. Distributive law says that this is a homomorphism. Therefore
we can try to define φ : R → End(R,+) by φ(r) = Lr. One can easily check that it
is a ring homomorphism by verifying Lr+s = Lr + Ls and Lrs = Lr ◦ Ls. This ring
homomorphism is injective because Lr = id in particular implies that r1 = r = id(1) =
1.



3. Let R be a finite commutative ring, if u is not a zero divisor, then consider the set
{u, u2, u3, ...}. This is a subset of R, hence it is finite. So by the pigeonhole princi-
ple there are i < i + k so that ui = ui+k. Therefore ui(uk − 1) = 0. We will show
that since u is not zero divisor, ui is also not a zero divisor. If ui was a zero divisor, then
uib = 0 for some b ̸= 0, then u(ui−1b) = 0. Now u is not a zero divisor, this forces
ui−1b = 0. Inductively, this reduces to ub = 0 for some b ̸= 0, this contradicts with u
being not a zero divisor. So ui(uk − 1) = 0 is possible only if uk = 1. In particular uk−1

is the inverse to u, so it is invertible.

4. A lot of the ring axioms for R × S boil down to direct checking. For example R × S is
an abelian group because it coincides with how we defined the product group back then.
The multiplicative identity ofR×S is given by (1R, 1S). And the distributive law follows
from that of R and S. For example, ((r, s) + (u, v)) ∗ (x, y) = (r + u, s + v) ∗ (x, y) =
((r+ u) ∗ x, (s+ v) ∗ y) = (r ∗ x+ u ∗ x, s ∗ y+ v ∗ y) = (r ∗ x, s ∗ y) + (u ∗ x, v ∗ y) =
(r, s) ∗ (x, y) + (u, v) ∗ (x, y).
We can explicitly find zero divisors in R× S, for example (1R, 0S) ∗ (0R, 1S) = (0R, 0S)
shows that (1R, 0S) is a zero divisor. So product rings are never integral domains.

5. (a) We verify the various axioms:
(1) (P (S),+) is an abelian group: The addition as defined is abelian since ∪ and
∩ are abelian. The additive identity is given by 0 = ∅, since 0 + A = A + 0 =
(A ∪ ∅) \ (A ∩ ∅) = A \ ∅ = A. The additive inverse of A ∈ P (S) is A itself
since A + A = (A ∪ A) \ (A ∩ A) = A \ A = ∅. The most tricky part is the
associativity. First note that A + B is the symmetric difference of A and B, i.e.
A+B = (A ∪B) \ (A ∩B) = (A \B) ⊔ (B \A) = (A ∩Bc) ⊔ (B ∩Ac), where
Ac = S \ A denotes the complement of C. Note that

(A+B) + C = [(A ∩Bc) ⊔ (B ∩ Ac)] + C

= [(A ∩Bc) ∪ (B ∩ Ac)] ∩ Cc ∪ {C ∩ [(A ∪B) ∩ (A ∩B)c]c}
= [(A ∩Bc ∩ Cc) ∪ (B ∩ Ac ∩ Cc)] ∪ {C ∩ [(A ∪B)c ∪ (A ∩B)]}
= (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (C ∩ Ac ∩Bc) ∪ (C ∩B ∩ A).

Here in the last equality, we have used that (A∪B)c = Ac∩Bc and that intersection
distributes over union of sets. Note that the expression we have obtained is symmet-
ric with respect to A,B,C. In particular, it is equal to (B + C) + A, this in turns is
equal to A+ (B + C) by commutativity, so we are done.
(2) The multiplicative identity is given by 1 = S, since 1 ∗A = A ∗ 1 = A∩S = A
for any A ∈ P (S). The multiplication is clearly associative.
(3) Distributive laws: This follows from that fact that (A\B)∩C = (A∩C)\(B∩C)

A ∗ C +B ∗ C = (A ∩ C) + (B ∩ C)
= [(A ∩ C) \ (B ∩ C)] ⊔ [(B ∩ C) \ (A ∩ C)]
= [(A \B) ∩ C] ⊔ [(B \ A) ∩ C]
= [(A \B) ⊔ (B \ A)] ∩ C
= (A+B) ∗ C.

The other distributive law follows from the one above since both +, ∗ are commuta-
tive.



(b) We have already shown above that A+ A = 0. And clearly A ∗ A = A ∩ A = A.

(c) Any element in (Z/2Z)n is of the form (a1, ..., an) where ai ∈ Z/2Z. Note that
ai = 0 or 1 and both of them satisfy x ∗ x = x. Therefore in the product ring,
(a1, ..., an)

2 = (a21, ..., a
2
n) = (a1, ..., an) still holds true.

(d) Let R be a Boolean ring, then x ∗ x = x for any x ∈ R. Let x, y ∈ R, consider
(x+ y)2 = x+ y. Expanding the LHS gives x2 + xy+ yx+ y2 = x+ xy+ yx+ y.
This implies that xy + yx = 0. Now we will show that a + a = 0 for any a ∈ R,
then a = −a and therefore we obtain xy = −yx = yx.
Simply consider a+ a = (a+ a)2 = (a2 + a2 + a2 + a2) = a+ a+ a+ a. Moving
a+ a to the RHS, gives a+ a = 0, as desired.
If R is an integral domain, since every element satisfies x2 = x. We may write
x(x − 1) = 0. By property of integral domain, we must have x = 0 or x = 1.
Therefore, every element is either 1 or 0, so R ∼= Z/2Z.


